Expression of a ribosomal protein gene in axillary buds of pea seedlings.

نویسندگان

  • J P Stafstrom
  • I M Sussex
چکیده

Axillary buds of intact pea seedlings (Pisum sativum L. cv Alaska) do not grow and are said to be dormant. Decapitation of the terminal bud promotes the growth of these axillary buds, which then develop in the same manner as terminal buds. We previously showed that unique sets of proteins are expressed in dormant and growing buds. Here we describe the cloning, sequencing, and expression of a cDNA clone (pGB8) that is homologous to ribosomal protein L27 from rat. RNA corresponding to this clone increases 13-fold 3 h after decapitation, reaches a maximum enhancement of about 35-fold after 12 h, and persists at slightly reduced levels at later times. Terminal buds, root apices, and elongating internodes also contain pGB8 mRNA but fully expanded leaflets and fully elongated internodes do not. In situ hybridization analysis demonstrates that pGB8 mRNA increases in all parts of the bud within 1 h of decapitation. Under appropriate conditions, growing buds can be made to stop growing and become dormant; these buds subsequently can grow again. Therefore, buds have the capacity to undergo multiple cycles of growth and dormancy. RNA gel blots show that pGB8 expression is reduced to dormancy levels as soon as buds stop growing. However, in situ hybridization experiments show that pGB8 expression continues at growing-bud levels in the apical meristem for 2 d after it is reduced in the rest of the bud. When cultured stems containing buds are treated with indoleacetic acid at concentrations >/=10 mum, bud growth and expression of pGB8 in the buds are inhibited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two novel transcripts expressed in pea dormant axillary buds.

To elucidate the molecular mechanism of apical dominance, the expression patterns of genes that are preferentially expressed in dormant axillary buds of pea (Pisum sativum L. cv. Alaska) seedlings were investigated. We isolated two cDNA clones, cPsAD1 and cPsAD2 whose corresponding genes were named PsAD1 and PsAD2, from a cDNA library of dormant axillary buds using the differential display meth...

متن کامل

Acropetal disappearance of PsAD1 protein in pea axillary buds after the release of apical dominance.

We recently isolated PsAD1 cDNA from pea (Pisum sativum L. cv. Alaska) seedlings, whose mRNA abundantly accumulated in dormant axillary buds and disappeared after decapitation [Madoka and Mori (2000) Plant Cell Physiol. 41: 274]. To further elucidate the function of PsAD1, we investigated the temporal and spatial distribution patterns of PsAD1 protein using Western blot and immunocytochemical a...

متن کامل

High Level Expression of Recombinant Ribosomal Protein (L7/L12) from Brucella abortus and Its Reaction with Infected Human Sera

Brucellosis, caused by Brucella spp., is an important zoonotic disease that causes abortion and infertility in cattle and undulant fever in humans. Various studies have examined cell-free native and recombinant proteins as candidate protective antigens in animal models. Among Brucella immunogenes, antigen based on ribosomal preparation has been widely investigated. In this study, the immunogeni...

متن کامل

Nucleotide sequence of four ribosomal protein L27 cDNAs from growing axillary buds of pea.

The small and large subunits of the eukaryotic ribosome contain a total of three to four rRNA molecules and 70 to 80 ribosomal proteins, which are required in stoichiometric amounts (Mager, 1988). Expression of ribosomal protein genes in plants has been correlated with active growth and cell division in a variety of tissues and organs, including auxin-treated soybean hypocotyls (Gantt and Key, ...

متن کامل

Comparison of MAPK and thioredoxin gene expression in wheat seedlings exposed to silver nitrate and silver nanoparticle

The extensive use of heavy metals and nanoparticles (NPs) has led to their release into the environment that might have negative impacts on both organisms and the environment. In this study, the molecular responses of wheat seedlings to silver nitrate and silver nanoparticles (AgNPs) were assessed by transcript accumulation analysis of genes coding for products potentially involved in heavy met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 1992